An Efficient Geometric Parameter Optimization Method for Microstrip Bandpass Filter Based on One‐Dimensional Convolutional Neural Network

Author:

Gao Yang,Wang Danyang,Yu Huilong,Hua Tao,Hou NingORCID,Lu YapengORCID

Abstract

Machine learning‐assisted electromagnetic simulation has become an effective acceleration tool for designing microwave components by introducing high‐precision models and optimization algorithms, featuring fast design and high efficiency. However, enormous amount of data generated from the blind preliminary and computationally expensive simulation is required to predict the accuracy response. An efficient geometric parameter optimization method for microstrip bandpass filter (BPF) based on a one‐dimensional convolutional neural network is proposed. Nonlinear convergence factor, adaptive weight, and Gaussian difference mutation strategies are integrated using the whale optimization algorithm to avoid the local optimum and improve optimization accuracy. Computational efficiency is improved significantly with small‐scale training data. The validity and efficiency of the proposed method are confirmed by fifth‐order microstrip BPFs, and the performance of the predicted structure parameters is significantly improved, which shows great promise for application in optimization and performance improvement in microwave electromagnetic simulation.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

Henan Provincial Science and Technology Research Project

Natural Science Foundation of Henan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3