Trend and Abrupt Regime Shift of Temperature Extreme in Northeast China, 1957–2015

Author:

Mwagona Patteson Chula1ORCID,Yao Yunlong1ORCID,Shan Yuanqi1ORCID,Yu Hongxian1ORCID,Zhang Yiwen1ORCID

Affiliation:

1. College of Wildlife Resources, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China

Abstract

Trend and an abrupt regime shift of temperature extremes were investigated based on diurnal data at 116 meteorological stations in the Northeast China region during 1957–2015. A total of 10 temperature indices divided into two categories: extremely cold and warm indices, were used in this study. The Mann–Kendall (MK) test was employed to evaluate the trend in temperature while changepoint, an R package for changepoint analysis, was used to detect changes in the mean levels of temperature extreme data series. The results of this study reveal that occurrence frequencies of the extreme cold night (TN10p) and extreme warm night (TN90p) have decreased and increased by −1.67 and 1.79 days/decade, respectively. Moreover, variations in temperature extremes have not been uniform with warming trends in minimum temperature being rapidly compared to maximum temperature extremes. The diurnal temperature range (DTR) depicted a remarkable decrease as a result of rapid warming in the minimum temperature. Warming in the region led to a reduction in the number of frost days (FD) and icing days (ID) and an increase in the number of growing season length (GSL) and tropical nights (Tr). Seasonally, TN10p largely decreased in winter and spring, while TNn and TN90p largely increased in winter and summer, respectively. Spatially, most of the stations with a significant warming trend in minimum temperatures were located in the Changbai Mountain, Greater Khingan Range, and Lesser Khingan Range. This implies that the mountainous regions are more sensitive and vulnerable to warming than the plain regions. On the contrary, most stations located in the Songnen Plain, Sanjiang Plain, and Liao River Plain displayed significant positive trend GSL and Tr. These climate extreme trends show that the region is experiencing warming which may have an impact on the hydrological process, ecological process, and agricultural production capacity.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3