Online Prediction of Milling Inner Hole Roundness Error Based on Accurate SSEM Value Extraction

Author:

Hu Zhenbang123ORCID,Jiang Gedong123ORCID,Mei Xuesong123ORCID,Yun Xialun123ORCID,Zhang Yun4ORCID

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, 710048 Xi’an, Shaanxi, China

2. Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, China

3. School of Mechanical Engineering, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, China

4. School of Electro-Mechanical Engineering, Xidian University, 710071 Xi’an, Shaanxi, China

Abstract

To improve the machining accuracy and production efficiency of precision components with deep hole structures, an online prediction method of the inner hole roundness error, which cannot be directly measured in real time during the machining process, is proposed in this paper. For online prediction of the workpiece roundness error (WRE) during machining, a predictive model based on correlation analysis and a proportional method is proposed according to the spindle synchronous error motion (SSEM) by three-probe method testing. To improve the prediction accuracy of the WRE, a particle swarm optimization (PSO) algorithm is introduced for optimizing a probe mounting angle of a three-probe method, and a harmonic wavelet method for SSEM feature extraction is proposed. Using the PSO algorithm, the optimal probe mounting angle of the three-probe method is obtained, the influence of spindle surface roundness on SSEM is eliminated, and the higher-order harmonic suppression of the three-probe method is avoided effectively. By the harmonic wavelet method, the accurate SSEM extraction is enhanced and the WRE prediction accuracy is promoted. The experiments show that the inner hole roundness error online prediction method proposed in this paper has high prediction accuracy.

Funder

2018 National Development and Reform Commission “Internet+” Major Project Fund

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3