Some Bounds on Bond Incident Degree Indices with Some Parameters

Author:

Rizwan Muhammad1,Bhatti Akhlaq Ahmad1,Javaid Muhammad2ORCID,Jarad Fahd34ORCID

Affiliation:

1. National University of Computer and Emerging Sciences, Lahore, Pakistan

2. Department of Mathematics, School of Science, University of Management and Technology, Lahore 54770, Pakistan

3. Department of Mathematics, Çankaya University, Etimesgut 06790, Ankara, Turkey

4. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Abstract

It is considered that there is a fascinating issue in theoretical chemistry to predict the physicochemical and structural properties of the chemical compounds in the molecular graphs. These properties of chemical compounds (boiling points, melting points, molar refraction, acentric factor, octanol-water partition coefficient, and motor octane number) are modeled by topological indices which are more applicable and well-used graph-theoretic tools for the studies of quantitative structure-property relationships (QSPRs) and quantitative structure-activity relationships (QSARs) in the subject of cheminformatics. The π -electron energy of a molecular graph was calculated by adding squares of degrees (valencies) of its vertices (nodes). This computational result, afterwards, was named the first Zagreb index, and in the field of molecular graph theory, it turned out to be a well-swotted topological index. In 2011, Vukicevic introduced the variable sum exdeg index which is famous for predicting the octanol-water partition coefficient of certain chemical compounds such as octane isomers, polyaromatic hydrocarbons (PAH), polychlorobiphenyls (PCB), and phenethylamines (Phenet). In this paper, we characterized the conjugated trees and conjugated unicyclic graphs for variable sum exdeg index in different intervals of real numbers. We also investigated the maximum value of SEIa for bicyclic graphs depending on a > 1 .

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3