Affiliation:
1. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
Abstract
The deposition of colloidal silica particles during the evaporation of sessile drops on a smooth substrate has been modeled by the simultaneous solution of the Navier–Stokes equations, the convective-diffusive equation for particles, and the diffusion equation for evaporated vapor in the gas phase. Isothermal conditions were assumed. A mapping was created to show the conditions for various deposition patterns for very dilute suspensions. Based on values of the Peclet (Pe) number and Damkholer numbers (Da and Da−1), the effects of adsorption and desorption were discussed according to the map. Simulations were also done for suspensions with a high particle concentration to form a solid phase during the evaporation by using a packing criterion. The simulations predicted the height and width of the ring deposit near the contact line, and the results compared favorably to experimental particle deposition patterns.
Subject
General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献