Modified Three-Term Liu–Storey Conjugate Gradient Method for Solving Unconstrained Optimization Problems and Image Restoration Problems

Author:

Wu Yulun1ORCID,Zhang Mengxiang1ORCID,Li Yan2ORCID

Affiliation:

1. College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, China

2. College of Mathematics and Statistics, Baise University, Baise, Guangxi, China

Abstract

A new three-term conjugate gradient method is proposed in this article. The new method was able to solve unconstrained optimization problems, image restoration problems, and compressed sensing problems. The method is the convex combination of the steepest descent method and the classical LS method. Without any linear search, the new method has sufficient descent property and trust region property. Unlike previous methods, the information for the function f x is assigned to d k . Next, we make some reasonable assumptions and establish the global convergence of this method under the condition of using the modified Armijo line search. The results of subsequent numerical experiments prove that the new algorithm is more competitive than other algorithms and has a good application prospect.

Funder

High Level Innovation Teams and Excellent Scholars Program in Guangxi Institutions of Higher Education

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference36 articles.

1. New properties of a nonlinear conjugate gradient method

2. A globally convergent version of the Polak-Ribière conjugate gradient method

3. Numerical optimization;J. Nocedal,2006

4. Restricted PR conjugate gradient method and its global convergence;Z. Shi;Advances in Mathematics,2002

5. The convergence properties of some new conjugate gradient methods

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3