Study on Overburden Rock Movement and Stress Distribution Characteristics under the Influence of a Normal Fault

Author:

Wu Quansen1ORCID,Kong Peng2ORCID,Wu Quanlin1,Xu Xinggang2,Wu Xingyu2ORCID,Guo Tao2

Affiliation:

1. Jining University, Jining 273100, China

2. State Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Fault activation triggers local deformation and dislocation, releasing a large amount of energy that can easily cause mining disasters, such as rock bursts and roadway instability. To study the changing characteristics of overburden structures and the evolution law of mining-induced stress as panel advances towards a fault from a footwall, two similar models were established, namely, a simulation experimental model and a numerical simulation model. In addition, the relationship among mining, mining stress, and rock bursts induced by fault activation was investigated. The results of this study reveal that when the working face is 30 m away from the fault, the high-position rock mass near the fault turns to the goaf where the fault is activated, and the two walls display relatively obvious dislocation. During the process of footwall panel mining to the fault, the abutment stress of the coal pillar tends to increase initially, followed by a decrease. When the working face is 20 m away from the fault, the abutment stress ahead of the working face reaches its maximum. When the width of the coal pillar is within the range of 10–40 m, the coal pillar accumulates a large amount of energy, and the working face affected by the fault easily induces a rock burst. Before fault activation, disturbances arising from the mining activities destroy the equilibrium stress environment of the rock system surrounding the fault, and the fault continuously accumulates energy. When the accumulated energy reaches a certain threshold, under the action of normal stress or shear stress, the fault will be activated, and a large amount of energy will be released, which can easily induce a rock burst. The research results in this paper provide a scientific basis for the classification, prediction, and prevention of rock bursts under similar geological conditions.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3