Endoatmospheric Ascent Optimal Guidance with Analytical Nonlinear Trajectory Prediction

Author:

Zhao Shilei1ORCID,Chen Wanchun1ORCID,Yang Liang1ORCID

Affiliation:

1. School of Astronautics, Beihang University, Xueyuan Road No. 37, Haidian District, Beijing, China

Abstract

In this paper, an endoatmospheric ascent optimal guidance law with terminal constraint is proposed, which is under the framework of predictor-corrector algorithm. Firstly, a precise analytical nonlinear trajectory prediction with arbitrary Angle of Attack (AOA) profile is derived. This derivation process is divided into two steps. The first step is to derive the analytical trajectory with zero AOA using a regular perturbation method. The other step is to employ pseudospectral collocation scheme and regular perturbation method to solve the increment equation so as to derive the analytical solution with arbitrary AOA profile. The increment equation is formulated by Taylor expansion around the trajectory with zero AOA which remains the second order increment terms. Therefore, the resulting analytical solutions are the nonlinear functions of high order terms of arbitrary AOA values discretized in Chebyshev-Gauss-Legendre points, which has high accuracy. Secondly, an iterative correction scheme using analytical gradient is proposed to solve the endoatmospheric ascent optimal guidance problem, in which the dynamical constraint is enforced by the resulting analytical solutions. It only takes a fraction of a second to get the guidance command. Nominal simulations, Monte Carlo simulations, and optimality verification are carried out to test the performance of the proposed guidance law. The results show that it not only performs well in providing the optimal guidance command, but also has great applicability, high guidance accuracy and computational efficiency. Moreover, it has great robustness even in large dispersions and uncertainties.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference44 articles.

1. Explicit Parameterized Energy Management for Scramjet Transition

2. Elliptical encircling of quadrotors for a dynamic target subject to aperiodic signals updating;X. Yue;IEEE Transactions on Intelligent Transportation Systems,2021

3. Neurodynamic approximation-based quantized control with improved transient performances for MEMS gyroscopes: theory and experimental results;X. Shao;IEEE Transactions on Industrial Electronics,2020

4. Neural-network-based constrained output-feedback control for MEMS gyroscopes considering scarce transmission bandwidth;X. Shao;IEEE Transactions on Cybernetics,2021

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3