Solubilized Pancreatic Extracellular Matrix from Juvenile Pigs Protects Isolated Human Islets from Hypoxia-Induced Damage: A Viable Option for Clinical Islet Transplantation

Author:

Brandhorst Heide1,Krishtul Stasia2,Brandhorst Daniel1ORCID,Baruch Limor2,Machluf Marcelle2,Johnson Paul R. V.13

Affiliation:

1. Nuffield Department of Surgical Sciences, University of Oxford, Oxford No. 3 9DU, UK

2. Laboratory for Cancer Drug Delivery and Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel

3. Oxford Biomedical Research Centre (OxBRC), Oxford No. 3 9DU, UK

Abstract

The pancreatic extracellular matrix (ECM) is an enormously complex construct. Previous studies underline the challenges to identify the optimal combinations and ratios of individual ECM proteins for promoting survival and function of isolated and transplanted islets. This study aimed on assessing the efficiency of solubilized natural ECM extracted from juvenile pigs, an unlimited donor source. Isolated human islets were cultured under a hypoxic atmosphere (2% oxygen) in media supplemented with either solubilized porcine pancreatic ECM (ppECM) or a mixture of human ECM proteins composed of collagen-IV, laminin-521, and nidogen-1 (hEPM). Control islets were cultured under identical conditions without ECM-compounds. Reactive oxygen species production increased three-fold in controls but was reduced by hEPM or ppECM. Early apoptosis remained on preculture levels when islets were treated with hEPM or ppECM. Preculture viability was preserved when hEPM or ppECM was administered. Whilst controls failed to respond to glucose challenge, treatment with hEPM or ppECM preserved the physiological insulin response. In summary, overall survival was significantly highest in ppECM-treated islets. This study presents a new approach to protect human islets from hypoxia-induced damage by supplementing media with ppECM extracted from an unlimited donor source. The findings may also serve as starting point for a novel encapsulation technique to protect isolated human islets.

Funder

European Union’s Cooperation Programme FP7

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3