Methane Flux Effect on Hydrate Formation and Its Acoustic Responses in Natural Sands

Author:

Bu Qingtao12ORCID,Xing Tongju34ORCID,Hu Gaowei12ORCID,Liu Changling12ORCID,Li Chengfeng12ORCID,Zhao Jinhuan12ORCID,Wang Zihao1ORCID,Zhao Wengao1ORCID,Kang Jiale1ORCID

Affiliation:

1. Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China

2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

3. Qingdao Geo-Engineering Surveying Institute (Qingdao Geological Exploration and Development Bureau), Qingdao 266100, China

4. Key Laboratory of Geological Safety of Coastal Urban Underground Space, Ministry of Natural Resources, Qingdao 266100, China

Abstract

The acoustic properties of hydrate deposits are important parameters for hydrate geophysical exploration, and the gas leakage model plays a very important role in hydrate accumulation systems. In order to reflect the gas supply environment during hydrate formation, a high-pressure device with a simulated leakage system was designed to achieve different methane flux supplies. The effects of different methane fluxes on the hydrate formation rate and the maximum hydrate saturation were obtained. The results in this study indicate that similar hydrate formation rates occur in systems with different methane fluxes. However, when the methane flux is large, it takes longer to reach the maximum hydrate saturation, and the larger the methane flux, the larger the hydrate saturation formed. In each methane flux system, the elastic velocity increased slowly with increasing hydrate saturation at the beginning of hydrate formation, but velocity increased quickly when the hydrate saturation reached 50–60%. In order to take into account the effect of the gas, the calculated values of the elastic velocity model were compared with the experimental data, which indicated that the BGTL theory and the EMT model are more adaptable and can be used to deduce hydrate morphology. In the large methane flux system, the hydrate mainly forms at grain contacts when the hydrate saturation is 10–60%. As the hydrate saturation reaches 60–70%, hydrate forms first in the pore fluid, and then the hydrates contact sediment particles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3