Discriminative, Competitive, and Collaborative Representation-Based Classification with l2-Norm Regularizations

Author:

Gou Jianping1ORCID,Lu Junyu1,Song Heping1ORCID,Ma Hongxing2,Ou Weihua3,Ke Jia1ORCID

Affiliation:

1. School of Computer Science and Communication Engineering and Jiangsu Key Laboratory of Security Tech. for Industrial Cyberspace, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. College of Electrical and Information Engineering, North Minzu University, Yinchuan, Ningxia 750021, China

3. School of Big Data and Computer Science, Guizhou Normal University, Guiyang, Guizhou 550025, China

Abstract

Recently, collaborative representation-based classification (CRC) and its many variations have been widely applied for various classification tasks in pattern recognition. To further enhance the pattern discrimination of CRC, in this article we propose a novel extension of CRC, entitled discriminative, competitive, and collaborative representation-based classification (DCCRC). In the proposed DCCRC, the class discrimination information is fully utilized for promoting the true class of each testing sample to dominantly represent the testing sample during collaborative representation. The class discrimination information is well considered in the newly designed discriminative l2-norm regularization that can decrease the ability of representation from the interclasses of each testing sample. Simultaneously, a competitive l2-norm regularization is introduced to the DCCRC model with the class discrimination information with the aim of enhancing the competitive ability of representation from the true class of each testing sample. The effectiveness of the proposed DCCRC is explored by extensive experiments on the several public face databases and some real numerical UCI data sets. The experimental results demonstrate that the proposed DCCRC achieves the superior performance over the state-of-the-art representation-based classification methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3