Rapid Quality Assessment of Polygoni Multiflori Radix Based on Near-Infrared Spectroscopy

Author:

Jia Bin12,Mai Ziying2,Xiang Chaoqun2,Chen Qiwen2,Cheng Min3,Zhang Longkai3,Xiao Xue12ORCID

Affiliation:

1. NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou 510663, China

2. Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou 510006, China

3. Hong Zheng Dao (China) Traditional Chinese Medicine Research Company Ltd, Guangzhou 510665, China

Abstract

The precise and prompt determination of quality control indicators such as moisture, stilbene glycosides, and anthraquinone glycosides is crucial in assessing the quality of Polygoni Multiflori Radix. Near-infrared spectroscopy is a nondestructive analytical technique that offers a more desirable approach than traditional methods for assessing content levels. In this study, various spectral preprocessing techniques were used to preprocess the raw spectral data. The spectral data were correlated with the determination of three-component contents using the partial least squares regression (PLSR) method. Then different algorithms, such as competitive adaptive weighted sampling (CARS), Monte Carlo uninformative variable elimination (MCUVE), and random frog hopping (RF), were used for model simplification and feature selection. The data suggest that the first-order deconvolution derivative (1st Dev.) processing of the spectral data is superior to other methods in all three model evaluation metrics. The PLSR model for moisture, stilbene glycosides, and anthraquinone glycosides produced the calibration coefficient of determination (R2C) of 0.82, 0.52, and 0.58, the root mean square error of cross validation (RMSECV) of 0.91%, 0.77%, and 0.69%, the prediction coefficient of determination (R2P) of 0.72, 0.28, and 0.54, the root mean square error of prediction (RMSEP) of 0.65%, 0.81%, and 0.75%, and relative percentage differences (RPDs) of 1.7, 1.0, and 0.8. After optimizing the model using CARS, R2C increased by 0.15%, 0.41%, and 0.34%, RMSECV decreased by 0.53%, 0.32%, and 0.24%, R2P increased by 0.21%, 0.63%, and 0.35%, RMSEP decreased by 0.36%, 0.41%, and 0.31%, and RPD increased by 1.1, 0.9, and 0.6, significantly improving the predictive capacity of the model. This research provides a feasible method for rapid compliance testing of Polygoni Multiflori Radix. To further improve the model’s performance and applicability, it is necessary to continuously expand the sample set with different varieties and locations for wide variation.

Funder

NMPA

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3