Somewhat Homomorphic Encryption: Ring Learning with Error Algorithm for Faster Encryption of IoT Sensor Signal-Based Edge Devices

Author:

Subramaniyaswamy V.1,Jagadeeswari V.1,Indragandhi V.2,Jhaveri Rutvij H.3ORCID,Vijayakumar V.4,Kotecha Ketan5ORCID,Ravi Logesh6

Affiliation:

1. School of Computing, SASTRA Deemed University, Thanjavur, India

2. School of Electrical Engineering, Vellore Institute of Technology, Vellore, India

3. School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India

4. School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

5. Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Pune, India

6. Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India

Abstract

In recent years, Homomorphic Encryption (HE) has shown the possibility of securely running a computation arbitrarily without performing the data decryption. Many authors have shown Somewhat Homomorphic Encryption (SHE) or Fully Homomorphic Encryption (FHE) schemes implemented practically on both the addition and multiplication operations for SHE. The recent methods for implementing the FHE methods completely depend on arbitrarily reducing the time taken to perform the encrypted multiplication operation to increase the computation power required by SHE methods. This paper aims to accelerate the encryption primitives in an integer-based SHE based on the duration between each data transmission from the sensor and data packaging method. If the number of sensors increases exponentially in an edge device environment, the signals have to be encrypted faster in a packed mode in the edge environment and transferred to the cloud without a loss in data. The presented SHE method reduces the time taken for encryption based on the input number from the sensor and invariably increases the performance of the edge device. This advantage also helps the deploying healthcare application obtain end-to-end privacy in transmitting sensitive patient data.

Funder

Science and Engineering Research Board

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3