Intelligent Predictive Maintenance of Dry-Type Transformer Based on Vibration

Author:

Yang Xiaoping12,Zhao Xiao12,Shen Xianhao12ORCID,Wang Yang12,Xu Ce3

Affiliation:

1. School of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541004, China

2. Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, Guangxi 541004, China

3. Guilin Juntaifu Electric Company Limited, Guilin, Guangxi 541004, China

Abstract

The normal operation of the transformer is an important guarantee for the safe operation of the whole power network. Usually, the periodic maintenance work increases the workload of the operation and maintenance personnel. In this paper, an intelligent predictive and maintenance system for dry-type transformer based on vibration is proposed to monitor the vibration state of the transformer. The fractional-order Kalman filter and normalization method are used to preprocess the vibration data to reduce noise interference, and then the fault is classified by one-dimensional convolution neural network. On this basis, an improved grey Verhulst model is established to predict the fault time of the transformer. The experimental results show that the classification accuracy of the one-dimensional convolution neural network can reach more than 95%, and the improved grey Verhulst model can predict the fault of the dry-type transformer one week in advance.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3