Decentralized Multiagent Actor-Critic Algorithm Based on Message Diffusion

Author:

Ding Siyuan1,Li Shengxiang2ORCID,Liu Guangyi2ORCID,Li Ou2,Ke Ke3,Bai Yijie2,Chen Weiye2

Affiliation:

1. Key Laboratory of Experimental Physics and Computational Mathematics, China

2. PLA Strategy Support Force Information Engineering University, China

3. National Digital Switching System Engineering and Technological R&D Center, China

Abstract

The exponential explosion of joint actions and massive data collection are two main challenges in multiagent reinforcement learning algorithms with centralized training. To overcome these problems, in this paper, we propose a model-free and fully decentralized actor-critic multiagent reinforcement learning algorithm based on message diffusion. To this end, the agents are assumed to be placed in a time-varying communication network. Each agent makes limited observations regarding the global state and joint actions; therefore, it needs to obtain and share information with others over the network. In the proposed algorithm, agents hold local estimations of the global state and joint actions and update them with local observations and the messages received from neighbors. Under the hypothesis of the global value decomposition, the gradient of the global objective function to an individual agent is derived. The convergence of the proposed algorithm with linear function approximation is guaranteed according to the stochastic approximation theory. In the experiments, the proposed algorithm was applied to a passive location task multiagent environment and achieved superior performance compared to state-of-the-art algorithms.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3