Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

Author:

Chen Gangli1,Rui Xiaoting1,Yang Fufeng1,Zhang Jianshu1,Zhou Qinbo1

Affiliation:

1. Institute of Launch Dynamics, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The dynamic test precision of the strapdown inertial measurement unit (SIMU) is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM), the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU) is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

Funder

Doctoral Program of Higher Education of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics modelling and Layout optimization of CFRP in-situ machining system;Applied Mathematical Modelling;2024-09

2. Mechanical Response of MEMS Suspended Inductors under Shock Using the Transfer Matrix Method;Micromachines;2023-06-01

3. Multibody system transfer matrix method: The past, the present, and the future;International Journal of Mechanical System Dynamics;2022-03

4. On modeling and dynamics of a multiple launch rocket system;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-03-10

5. Magnetorheological elastomer isolator in compression mode for IMU vibration isolation;Journal of Mechanics of Materials and Structures;2020-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3