Graph Feature Fusion-Driven Fault Diagnosis of Complex Process Industrial System Based on Multivariate Heterogeneous Data

Author:

Zhang Fengyuan1ORCID,Liu Jie1ORCID,Lu Xiang2ORCID,Li Tao23,Li Yi4ORCID,Sheng Yongji4,Wang Hu5,Liu Yingwei6

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. Hubei Three Gorges Laboratory, Yichang 443000, China

4. COFCO (Jilin) Bio-Chemical Technology Co., Ltd, Changchun 130000, China

5. COFCO (Anhui) Bio-Chemical Technology Co., Ltd, Suzhou 234000, China

6. COFCO Nutrition and Health Research Institute Co., Ltd, Beijing 102209, China

Abstract

The stable operation of the process industrial system, which is integrated with various complex equipment, is the premise of production, which requires the condition monitoring and diagnosis of the system. Recently, the continuous development of deep learning (DL) has promoted the research of intelligent diagnosis in process industry systems, and the sensor system layout has provided sufficient data foundation for this task. However, these DL-driven approaches have had some shortcomings: (1) the output signals of heterogeneous sensing systems existing in process industry systems are often high-dimensional coupled and (2) the fault diagnosis model built from pure data lacks systematic process knowledge, resulting in inaccurate fitting. To solve these problems, a graph feature fusion-driven fault diagnosis of complex process industry systems is proposed in this paper. First, according to the system’s prior knowledge and data characteristics, the original multisource heterogeneous data are divided into two categories. On this basis, the two kinds of data are converted to physical space graphs (PSG) and process knowledge graphs (PKG), respectively, according to the physical space layout and reaction mechanism of the system. Second, the node features and system spatial features of the subgraphs are extracted by the graph convolutional neural network at the same time, and the fault representation information of the subgraph is mined. Finally, the attention mechanism is used to fuse the learned subgraph features getting the global-graph representation for fault diagnosis. Two publicly available process chemistry datasets validate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3