Predicting and Preventing Crime: A Crime Prediction Model Using San Francisco Crime Data by Classification Techniques

Author:

Khan Muzammil1ORCID,Ali Azmat2ORCID,Alharbi Yasser3ORCID

Affiliation:

1. Department of Computer & Software Technology, University of Swat, Swat, Pakistan

2. School of Computer Science, Wuhan University, Wuhan, China

3. College of Computer Science, University of Hail, Hail, Saudi Arabia

Abstract

The crime is difficult to predict; it is random and possibly can occur anywhere at any time, which is a challenging issue for any society. The study proposes a crime prediction model by analyzing and comparing three known prediction classification algorithms: Naive Bayes, Random Forest, and Gradient Boosting Decision Tree. The model analyzes the top ten crimes to make predictions about different categories, which account for 97% of the incidents. These two significant crime classes, that is, violent and nonviolent, are created by merging multiple smaller classes of crimes. Exploratory data analysis (EDA) is performed to identify the patterns and understand the trends of crimes using a crime dataset. The accuracies of Naive Bayes, Random Forest, and Gradient Boosting Decision Tree techniques are 65.82%, 63.43%, and 98.5%, respectively, and the proposed model is further evaluated for precision and recall matrices. The results show that the Gradient Boosting Decision Tree prediction model is better than the other two techniques for predicting crime, based on historical data from a city. The analysis and prediction model can help the security agencies utilize the resources efficiently, anticipate the crime at a specific time, and serve society well.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference25 articles.

1. An effective data warehousing system for rfid using novel data cleaning, data transformation and loading techniques;B. Kochar;The International Arab Journal of Information Technology,2012

2. Performance of clustering algorithms in healthcare database;P. Santhi;International Journal for Advances in Computer Science,2010

3. A Comparison Study between Data Mining Tools over some Classification Methods

4. Comparative Exploration of Features for Data Mining Results by Legend Navigation Interactive Technique

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3