Investigation of Neuron Latency Modulated by Bilateral Inferior Collicular Interactions Using Whole-Cell Patch Clamp Recording in Brain Slices

Author:

Ma Jinzhe1ORCID,Han Yangyang1ORCID,Yao Yiting1ORCID,Wang Huimei1ORCID,Chen Mengxia1ORCID,Fu Ziying1ORCID,Chen Qicai1ORCID,Tang Jia1ORCID

Affiliation:

1. School of Life Sciences and Hubei Key Lab of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China

Abstract

As the final level of the binaural integration center in the subcortical nucleus, the inferior colliculus (IC) plays an essential role in receiving binaural information input. Previous studies have focused on how interactions between the bilateral IC affect the firing rate of IC neurons. However, little is known concerning how the interactions within the bilateral IC affect neuron latency. In this study, we explored the synaptic mechanism of the effect of bilateral IC interactions on the latency of IC neurons. We used whole-cell patch clamp recordings to assess synaptic responses in isolated brain slices of Kunming mice. The results demonstrated that the excitation-inhibition projection was the main projection between the bilateral IC. Also, the bilateral IC interactions could change the reaction latency of most neurons to different degrees. The variation in latency was related to the type of synaptic input and the relative intensity of the excitation and inhibition. Furthermore, the latency variation also was caused by the duration change of the first subthreshold depolarization firing response of the neurons. The distribution characteristics of the different types of synaptic input also differed. Excitatory-inhibitory neurons were widely distributed in the IC dorsal and central nuclei, while excitatory neurons were relatively concentrated in these two nuclei. Inhibitory neurons did not exhibit any apparent distribution trend due to the small number of assessed neurons. These results provided an experimental reference to reveal the modulatory functions of bilateral IC projections.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3