Ground-Air Traffic Congestion Propagation Model Based on Hierarchical Control Interdependent Network

Author:

Jiang Furong1ORCID,Zhang Zhaoning1,Dai Xiaoxu1

Affiliation:

1. Civil Aviation University of China, Tianjin 300300, China

Abstract

A multilayer network approach to model and analyze air traffic networks is proposed. These networks are viewed as complex systems with interactions between airports, airspaces, procedures, and air traffic flows (ATFs). A topology-based airport-airspace network and a flight trajectory network are developed to represent critical physical and operational characteristics. A multilayer traffic flow network and an interrelated traffic congestion propagation network are also formulated to represent the ATF connection and congestion propagation dynamics, respectively. Furthermore, a set of analytical metrics, including those of airport surface (AS), terminal controlled airspace (TCA), and area-controlled airspace (ACA), is introduced and applied to a case study in central and south-eastern China. The empirical results show the existence of a fundamental diagram of the airport, terminal, and intersections of air routes. Moreover, the dynamics and underlying mechanisms of congestion propagation through the AS-TCA-ACA network are revealed and interpreted using the classical susceptible-infectious-removed model in a hierarchical network. Finally, a high propagation probability among adjacent terminals and a high recovery probability are identified at the network system level. This study provides analytical tools for comprehending the complex interactions among air traffic systems and identifies future developments and automation of layered coupled air traffic management systems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3