Local Gravitation Clustering-Based Semisupervised Online Sequential Extreme Learning Machine

Author:

Wang Xingbiao12,Gu Bin1,Zou Quanyi3ORCID,Lei Rui4ORCID

Affiliation:

1. Department of Electronic Commerce, South China University of Technology, Guangzhou, China

2. Graduate School of Guizhou Minzu University, Guiyang, China

3. The School of Software Engineering, South China University of Technology, Guangzhou, China

4. The School of Economics, Jinan University, Guangzhou, China

Abstract

Due to the limited number of labeled samples, semisupervised learning often leads to a considerable empirical distribution mismatch between labeled samples and unlabeled samples. To this end, this paper proposes a novel semisupervised algorithm named Local Gravitation-based Semisupervised Online Sequential Extreme Learning Machine (LGS-OSELM), learning to unlabeled samples follows from easy to difficult. Each sample is formulated as an object with mass and associated with local gravitation generated from its neighbors. The similarity between samples is measurable by the local gravitation measures (centrality CE and coordination CO). First, the LGS-OSELM uses the labeled samples to learn the initialization model by implementing ELM. Second, the unlabeled samples with a high confidence level that is easy to learn are labeled with the pseudo label. Then, these samples are utilized to iterate the neural network by implementing OS-ELM. The proposed approach ultimately realizes effective learning of all samples through successive learning unlabeled samples and iterating neural networks. We implement experiments on several standard benchmark data sets to verify the performance of the proposed LGS-OSELM, which demonstrates that our proposed approach outperforms state-of-the-art methods in terms of accuracy.

Funder

Scientific and Technological Innovation

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3