Affiliation:
1. Faculty of Electronic and Information Engineering, West Anhui University, Lu’an, China
2. Institute of Distributed Intelligence and Internet of Things, Hefei University of Technology, Hefei, China
Abstract
With the increased awareness of environmental protection, people have higher requirements for the accuracy of environmental information of surrounding life. The current monitoring of urban environmental information mainly comes from local environmental weather stations. Although the monitoring equipment of environmental weather stations is better than personal monitoring equipment, the monitoring equipment of weather monitoring stations is too expensive and only suitable for large-scale coarse-grained monitoring. Because the environmental information of a city is affected by factors such as landforms, buildings, rivers, factories, population density, and traffic flow, there are great differences in the environmental information of different areas in a city. Therefore, this study proposes a method that can be used for small-scale and fine-grained environmental information monitoring: the task grid-based urban environmental information release mechanism for mobile crowd sensing (MCS). Through this mechanism, the monitoring area is divided into different task grids according to the characteristics of the area, and the environmental information is sensed by mobile crowd sensing. For the sensing data, through an efficient data fusion algorithm designed in this study, the sensing information is fused to obtain the fine-grained environmental information of different task grids in the area. Through the use of this mechanism, differentiated environmental information can be provided to users in different areas of the city. In a simulation, this mechanism showed higher information accuracy than traditional information release methods. Thus, the mechanism is scientific and has good application value.
Funder
University Natural Science Research Project of Anhui Province
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献