Factors Determining the Removal Efficiency of Procion MX in Waters Using Titanate Nanotubes Catalyzed by UV Irradiation

Author:

Que Vo Nguyen Xuan12,Khoi Tran Tien23,Thuy Nguyen Thi23ORCID,Dung Ta Thi Minh12,Binh Dao Thi Thanh12,Huy Nguyen Nhat12ORCID

Affiliation:

1. Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

2. Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam

3. Department of Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam

Abstract

The treatment of wastewater from the textile industry containing organic dyes faces many challenges since these compounds resist the biodegradation process in conventional treatment units. Among the physicochemical processes, photocatalysis is considered a facile, cheap, and environmental-friendly technology for treating persistent organic pollutants in waters at low concentrations. This study investigated several physicochemical factors determining the photocatalytic activity of titanate nanotubes (TNTs) to remove Procion MX 032 (PMX), an azo dye, in waters. Degradation of PMX by photocatalytic oxidation process at room temperature (30°C) was set up with the UV irradiation in the presence of different types of photocatalyst such as ST-01 (100% anatase), industrial TiO2, TNTs calcined at 120°C and 500°C. Effect of reaction time, catalyst amount, pH, light wavelength and intensity, and oxidants was investigated. Consequently, TNTs calcined at 500°C provided the highest removal efficiency. The photocatalytic oxidation of PMX by TNT calcined at 500°C was affected by pH variation, getting the highest removal at pH of 8, and inhibited with the presence of H2O2 and O2. Particularly, the PMX degradation using titanate nanotubes was optimized under the UV-A intensity of 100 W/m2. The dye was degraded by more than 95% at the TNTs concentration of 75 mg/L and pH 8.0 after 90 min. The results suggest that photocatalysis using TNTs can be a simple but efficient treatment method to remove PMX and potentially be applied for the treatment of wastewaters containing dyes.

Funder

Vietnam National University Ho Chi Minh City

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3