Development of a Multifunctional Radiation Measurement System for the Rapid Radiological Characterization of a Decommissioned Nuclear Facility Site

Author:

Joo Han Young1ORCID,Kim Jae Wook1,Kim Young Seo1,Jeong So Yun1,Lee Bongsoo2,Moon Joo Hyun1ORCID

Affiliation:

1. Department of Energy Engineering, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan, Chungnam 31116, Republic of Korea

2. Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Abstract

In this study, a radiation measurement system with multifunctions for the rapid radiological characterization of a decommissioned nuclear facility site was developed and evaluated. The system remotely and simultaneously measures the beta and gamma radiation from the soil at a decommissioned nuclear facility site and wirelessly transmits the measurement data to the main server, which collects and analyzes the data. The radiation-measuring part of the system is composed of a sensing probe, multichannel analyzer (MCA), and laptop computer. The sensing probe is a phoswich radiation sensor (PHORS) consisting of two inorganic scintillators (NaI(Tl) and CaF2(Eu)), each of which simultaneously measures the count rates and energies of the beta and gamma radiation. To test the performance of the PHORS, the beta and gamma radiation from a radiation source at 0–10 cm depths (at steps of 1 cm) under a soil surface was measured. The measurements show that the radiation count rates agree well with the theoretically predicted ones; the PHORS is as good as commercial radiation detectors in providing the energy spectrum of a radionuclide. In addition, a chi-square test was conducted, and the energy resolution was evaluated. The communication part of the system consisting of a global positioning system (GPS) and long-term evolution telecommunication (LTE) modem can successfully transmit the measurement data and their location information.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3