The Effect of Crank Length Changes from Cycling Rehabilitation on Muscle Behaviors

Author:

Zongxing Lu1ORCID,Shengxian You1,Xiangwen Wei1,Xiaohui Chen1,Chao Jia1ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350116 Fujian, China

Abstract

Background. Many sports and physical activities can result in lower limb injures. Pedaling is an effective exercise for lower extremity rehabilitation, but incorrect technique may cause further damage. To some extent, previous experiments have been susceptible to bias in the sample recruited for the study. Alternatively, methods used to simulation activities can enable parametric studies without the influence of noise. In addition, models can facilitate the study of all muscles in the absence of the effects of fatigue. This study investigated the effects of crank length on muscle behavior during pedaling. Methods. Six muscles (soleus, tibialis anterior, vastus medialis, vastus lateralis, gastrocnemius, and rectus femoris), divided into three groups (ankle muscle group, knee muscle group, and biarticular muscle group), were examined under three cycling crank lengths (100 mm, 125 mm, and 150 mm) in the present study. In addition, the relationship between crank length and muscle biological force was analyzed with the AnyBody Modeling System™, a human simulation modeling software based on the Hill-type model. Findings. Based on inverse kinematic analysis, the results indicate that muscle activity and muscle force decrease in varying degrees with increases in crank length. The maximum and minimum muscular forces were attained in the tibialis anterior and vastus lateralis, respectively. Interpretation. Studying the relationship between muscle and joint behavior with crank length can help rehabilitation and treating joint disorders. This study provides the pedal length distribution areas for patients in the early stages of rehabilitation.

Funder

Science Project of Fujian Education Department

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3