Analytical Nonstationary 3D MIMO Channel Model for Vehicle-to-Vehicle Communication on Slope

Author:

Liu Kaizhen1ORCID,Wei Zaixue1ORCID,Chen Sibo1ORCID

Affiliation:

1. School of Information and Telecommunication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Vehicle-to-vehicle communication plays a strong role in modern wireless communication systems, appropriate channel models are of great importance in future research, and propagation environment with slope is one special kind. In this study, a novel three-dimensional nonstationary multiple-input multiple-output channel model for the sub-6 GHz band is proposed. This model is a regular-shaped multicluster geometry-based analytical model, and it combines the line-of-sight component and multicluster scattering rays as the nonline-of-sight components. Each cluster of scatterers represents the influence of different moving vehicles on or near a slope, and scatterers are, respectively, distributed within two spheres around the transmitter and the receiver. In this model, it is considered that the azimuth and elevation angles of departure and arrival are jointly distributed and conform to the von Mises–Fisher distribution, which can easily control the range and concentration of the scatterers within spheres to mimic the real-world situation well. Moreover, the impulse response and the autocorrelation function of the corresponding channel is derived and proposed; then, the Doppler power spectrum density of the channel is simulated and analyzed. In addition, the nonstationary characteristics of the presented channel model are observed through simulations. Finally, the simulation results are compared with measurement data in order to validate the utility of the proposed model.

Funder

Beijing University of Posts and Telecommunications

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical RS-GBSM-Based Nonstationary Low-Altitude Air-to-Air Channel Modeling over Open Area;International Journal of Antennas and Propagation;2022-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3