Application of Extreme Gradient Boosting Based on Grey Relation Analysis for Prediction of Compressive Strength of Concrete

Author:

Cui Liyun1ORCID,Chen Peiyuan1ORCID,Wang Liang1,Li Jin1,Ling Hao2

Affiliation:

1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

Abstract

The prediction of concrete strength is an interesting point of investigation and could be realized well, especially for the concrete with the complex system, with the development of machine learning and artificial intelligence. Therefore, an excellent algorithm should put emphasis to receiving increased attention from researchers. This study presents a novel predictive system as follows: extreme gradient boosting (XGBoost) based on grey relation analysis (GRA) for predicting the compressive strength of concrete containing slag and metakaolin. One of its highlights is a feature selection methodology, i.e., GRA, which was used to determine the main input variables. Another highlight is that its performance was compared with the frequently used artificial neural network (ANN) and genetic algorithm-artificial neural network (GA-ANN) by using random dataset and the same testing datasets. For three same testing datasets, the average R2 values of ANN, GA-ANN, and XGBoost are 0.674, 0.829, and 0.880, respectively, indicating that XGBoost has the highest absolute fraction of variance (R2). XGBoost can provide best result by testing the root mean squared error (RMSE) and mean absolute percentage error (MAPE). The average RMSE values of ANN, GA-ANN, and XGBoost are 15.569 MPa, 10.530 MPa, and 9.532 MPa, respectively, and those of MAPE of ANN, GA-ANN, and XGBoost are 11.224%, 9.140%, and 8.718%, respectively. Thus, the XGBoost definitely performed better than the ANN and GA-ANN. Finally, a type of application software based on XGBoost was developed for practical applications. This vivid software interfaces could help users in prediction and easy and efficient analysis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3