Dissolved Microbial Methane in the Deep Crystalline Crust Fluids–Current Knowledge and Future Prospects

Author:

van Dam Femke1,Kietäväinen Riikka2,Drake Henrik1ORCID

Affiliation:

1. Linnæus University, Department of Biology and Environmental Science, 39182 Kalmar, Sweden

2. Geological Survey of Finland, 02151 Espoo, Finland

Abstract

Methane is a powerful greenhouse gas, of which most is produced by microorganisms in a process called methanogenesis. One environment where methanogenic microorganisms occur is the deep biosphere. The deep biosphere environment comprises a variety of ecosystem settings; marine habitats such as subseafloor sediments, rock pore volumes within subseafloor basalts, and terrestrial settings such as sedimentary rocks and crystalline bedrock fracture networks. Microbial methane formed in these environments influence the biological, chemical, and geological cycles of the upper crust, and may seep out of the deep into the atmosphere. This review focuses on the process of microbial methanogenesis and methane oxidation in the relatively underexplored deep crystalline-bedrock hosted subsurface, as several works in recent years have shown that microbial production and consumption occur in this energy-poor rock-fracture-hosted environment. These recent findings are summarized along with techniques to study the source and origins of methane in the terrestrial crust. Future prospects for exploration of these processes are proposed to combine geochemical and microbial techniques to determine whether microbial methanogenesis is a ubiquitous phenomenon in the crystalline crust across space and time. This will aid in determining whether microbial methane in the globally vast deep rock-hosted biosphere environment is a significant contributor to the global methane reservoir.

Funder

Crafoord Foundation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference113 articles.

1. Chapter 5: global carbon and other biogeochemical cycles and feedbacks;J. G. Canadell,2021

2. The Earth’s energy budget, climate feedbacks, and climate sensitivity;P. Forster,2021

3. Methane Feedbacks to the Global Climate System in a Warmer World

4. Microbial life in deep granitic rock

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3