Affiliation:
1. Koç University, Sarıyer, 34450 Istanbul, Turkey
Abstract
This paper presents a scalable dynamic load balancing scheme for a parallel front-tracking method based multiphase flow simulation. In this simulation employing both Lagrangian and Eulerian grids, processes operating on Lagrangian grid are susceptible to load imbalance due to moving Lagrangian grid points (bubbles) and load distribution based on spatial location of bubbles. To load balance these processes, we distribute load keeping in view both current processor load distribution and bubble spatial locality and remap interprocess communication. The result is a uniform processor load distribution and predictable and less expensive communication scheme. Scalability studies on the Hazel Hen supercomputer demonstrate excellent scaling with exponential savings in execution time as the problem size becomes increasingly large. While moderate speedup is observed for strong scaling, speedup of up to 30% is achieved over nonload-balanced version when simulating 13824 bubbles on 4096 cores for weak scaling studies.
Funder
Türkiye Bilimsel ve Teknolojik Arastirma Kurumu
Subject
Computer Science Applications,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献