The Secure Transmission of Videos Using the Karhunen-Loéve (K-L) Decomposition and the Synchronization of the Unified Chaotic System with the Hyperchaotic Chen System

Author:

Smaoui N.1ORCID,Zribi M.2ORCID,Elmokadem T.2

Affiliation:

1. Department of Mathematics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

2. Department of Electrical Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Abstract

A unique secure communication scheme that can be used for the transmission of gray-scale and color videos is presented in this paper. The proposed scheme is developed by using the Karhunen-Loéve (K-L) decomposition and the synchronization of the unified chaotic system with the hyperchaotic Chen system. First, the gray-scale or color video is represented by a set of N frames. In order to reduce the data, the K-L decomposition is used to come up with data coefficients and eigenfunctions that optimally obtain the crux of the N frames. Using only the most energetic eigenfunctions to approximate the original frames results in computational savings. The data coefficients corresponding to the most energetic eigenfunctions are encrypted and transmitted using a master system composed of a combination of the unified chaotic system and the hyperchaotic Chen system. At the receiver end, these coefficients are recovered and a controller of the sliding mode type is utilized forcing the master and slave systems to synchronize. Simulation results illustrate how the proposed control law is able to synchronize the master and the slave systems. In addition, a demonstration of the recovery of the original frames using the decrypted data coefficients along with the eigenfunctions of the frame is provided. The presented simulations indicate that the proposed scheme results in an excellent performance.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3