Improvement on Structural Forms of Pile Group Foundations of Deepwater Bridges

Author:

Yu Enbo1,Ren Sen1,Tang Haojun1ORCID,Li Yongle1ORCID,Fang Chen1

Affiliation:

1. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

As long-span cross-sea bridges extend to deeper sea areas, the bridge pile tends to increase in its slenderness ratio and becomes more susceptible to waves. To improve the structural stability at the construction stage, this study analyses wave-induced response of foundations. The wave theory and the method used for computing wave forces on foundations are first introduced. Then, a pile group foundation is taken as the research object, and different pile lengths ranging from 16 m to 46 m are considered. The wave-induced response of the piles and the cap is calculated. After understanding the effect of the pile length, three optimized foundations are proposed with the aim of reducing the free length of the pile, and the corresponding finite element models are established to compare their wave-induced response. The results show that the displacement at the top of the foundation increases with the increase in the pile length until the cap partly emerges from water and so does the internal force at the bottom. Setting a constraint in the middle of the piles can reduce their free lengths and is favourable to the wave-induced response of the foundation except for the shearing force. A stronger constraint shows better effects on improvement of the stability of the foundation. The conclusions provide reference for optimization on pile foundations of deepwater bridges.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3