An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data

Author:

Bhattacharyya D.1ORCID,Singh G.N.1ORCID,Jawa Taghreed M.2,Sayed-Ahmed Neveen2ORCID,Pandey Awadhesh K.3ORCID

Affiliation:

1. Department of Mathematics & Computing, Indian Institute of Technology (ISM), Dhanbad-826 004, Jharkhand, India

2. Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. Department of Mathematics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand 248009, India

Abstract

In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. The results have been summarized, and discussion regarding real-life applications of the estimator follows.

Funder

Taif University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference32 articles.

1. A new generalization of garima distribution with application to real life data;M. Mohiuddin;Applied Mathematics & Information Sciences,2021

2. New aspects on the modified group LASSO using the least angle regression and shrinkage algorithm;A. El Sheikh;Information Sciences Letters,2021

3. Estimation of a population mean using different imputation methods;M. S. Ahmed;Statistics in Transition,2006

4. Marshall-olkin alpha power inverse Weibull distribution: non bayesian and bayesian estimations;A. M. Basheer;Journal of Statistics Applications & Probability,2021

5. Improved Estimators of the Population Mean for Missing Data

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3