Machine Learning Model and Statistical Methods for COVID-19 Evolution Prediction

Author:

Alsulami M. D.1ORCID,Abu-Zinadah Hanaa2ORCID,Ibrahim Anwar Hassan3ORCID

Affiliation:

1. University of Jeddah, College of Sciences and Arts at Alkamil, Department of Mathematics, Jeddah, Saudi Arabia

2. University of Jeddah, College of Science, Department of Statistics, Jeddah, Saudi Arabia

3. Qassim University, College of Engineering, Department of Electrical Engineering, Qassim, Saudi Arabia

Abstract

In this paper, we discuss the statistical processing of COVID-19 data. COVID-19 was initially recognized in Wuhan, China, on December 31, 2019. It then spread to other parts of the world, so it became known as a pandemic. It has received interest due to its sudden emergence as a deadly human pathogen. The effect is not only confined to morbidity and mortality but also extends to social and economic consequences. Statistical analysis is required to measure the damage done to humans and take the necessary measures to limit this damage. The objective of the work was to examine the effects of various factors on the deaths due to COVID-19. To achieve this goal, we applied a logistic regression (LR) model, as a statistical method, and a decision tree model, as a machine learning method, to model the deaths due to COVID-19 in France, Germany, Italy, and Spain. The predictive abilities of these two models were compared. The overall accuracies of the decision tree and LR were 94.1% and 93.9%, respectively. It was also observed that countries with high population densities tended to have more cases than those with smaller population densities. There were more female deaths than male deaths in the United Kingdom, and more deaths occurred for those aged 65 years and older. The data were collected from the World Health Organization’s official website from January 11, 2020, to May 29, 2020. The results obtained were in agreement with the previous results obtained by others.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference41 articles.

1. First Italian dies of coronavirus as outbreak flares in north, healthcare & pharma;E. Anzolin,2020

2. Coronavirus Colpite tutte le regioni. La Protezione civile: ecco i numeri aggiornati

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3