Existence of an Intermediate Metallic Phase at the SDW-CDW Crossover Region in the One-Dimensional Holstein-Hubbard Model at Half-Filling

Author:

Chatterjee Ashok1

Affiliation:

1. School of Physics, University of Hyderabad, Hyderabad 500 046, India

Abstract

The Holstein-Hubbard model serves as a useful framework to investigate this interplay between the phonon-induced electron-electron attractive interaction and the direct Coulomb repulsion and can afford interesting phase diagrams due to competition among charge-density wave (CDW), spin-density wave (SDW), and superconductivity. However the detailed nature of the CDW-SDW transition is still not very well known. It is generally believed that the system undergoes a direct insulator to insulator transition from CDW to SDW with the increase of the on-site Coulomb repulsion for a given strength of the electron-phonon coupling and this is the main bottleneck for the polaronic/bipolaronic mechanism of high-temperature superconductivity. We have recently made an investigation to study the nature of the transition from SDW phase to CDW phase within the framework of a one-dimensional Holstein-Hubbard model at half-filling using a variational method. We find that an intervening metallic phase may exist at the crossover region of the CDW-SDW transition. We have also observed that if the anharmonicity of the phonons is taken into account, this metallic phase widens and the polarons become more mobile, which is a more favorable situation from the point of view of superconductivity. We shall finally show that an improved variational calculation widens the metallic phase and makes the polarons more mobile, which reconfirms the existence of the intermediate metallic phase at the SDW-CDW crossover region.

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3