Advancing Objective Mobile Device Use Measurement in Children Ages 6–11 Through Built-In Device Sensors: A Proof-of-Concept Study

Author:

Finnegan Olivia L.1ORCID,Weaver R. Glenn1ORCID,Yang Hongpeng2,White James W.1,Nelakuditi Srihari2ORCID,Zhong Zifei2,Ghosal Rahul3ORCID,Tong Yan2ORCID,Cepni Aliye B.1ORCID,Adams Elizabeth L.1,Burkart Sarah1ORCID,Beets Michael W.1,Armstrong Bridget1

Affiliation:

1. Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA

2. Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA

3. Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA

Abstract

Mobile devices (e.g., tablets and smartphones) have been rapidly integrated into the lives of children and have impacted how children engage with digital media. The portability of these devices allows for sporadic, on-demand interaction, reducing the accuracy of self-report estimates of mobile device use. Passive sensing applications objectively monitor time spent on a given device but are unable to identify who is using the device, a significant limitation in child screen time research. Behavioral biometric authentication, using embedded mobile device sensors to continuously authenticate users, could be applied to address this limitation. This study examined the preliminary accuracy of machine learning models trained on iPad sensor data to identify the unique user of the device in a sample of children ages 6 to 11. Data was collected opportunistically from nine participants (8.2 ± 1.75 years, 5 female) in the sedentary portion of two semistructured physical activity protocols. SensorLog was downloaded onto study iPads and collected data from the accelerometer, gyroscope, and magnetometer sensors while the participant interacted with the iPad. Five machine learning models, logistic regression (LR), support vector machine, neural net (NN), k-nearest neighbors (k-NN), and random forest (RF), were trained using 57 features generated from the sensor output to perform multiclass classification. A train-test split of 80%–20% was used for model fitting. Model performance was evaluated using F1 score, accuracy, precision, and recall. Model performance was high, with F1 scores ranging from 0.75 to 0.94. RF and k-NN had the highest performance across metrics, with F1 scores of 0.94 for both models. This study highlights the potential of using existing mobile device sensors to continuously identify the user of a device in the context of screen time measurement. Future research should explore the performance of this technology in larger samples of children and in free-living environments.

Funder

National Institute of General Medical Sciences

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3