Development of Stacked Long Short-Term Memory Neural Networks with Numerical Solutions for Wind Velocity Predictions

Author:

Wei Chih-Chiang1ORCID

Affiliation:

1. Department of Marine Environmental Informatics and Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan

Abstract

Taiwan, being located on a path in the west Pacific Ocean where typhoons often strike, is often affected by typhoons. The accompanying strong winds and torrential rains make typhoons particularly damaging in Taiwan. Therefore, we aimed to establish an accurate wind speed prediction model for future typhoons, allowing for better preparation to mitigate a typhoon’s toll on life and property. For more accurate wind speed predictions during a typhoon episode, we used cutting-edge machine learning techniques to construct a wind speed prediction model. To ensure model accuracy, we used, as variable input, simulated values from the Weather Research and Forecasting model of the numerical weather prediction system in addition to adopting deeper neural networks that can deepen neural network structures in the construction of estimation models. Our deeper neural networks comprise multilayer perceptron (MLP), deep recurrent neural networks (DRNNs), and stacked long short-term memory (LSTM). These three model-structure types differ by their memory capacity: MLPs are model networks with no memory capacity, whereas DRNNs and stacked LSTM are model networks with memory capacity. A model structure with memory capacity can analyze time-series data and continue memorizing and learning along the time axis. The study area is northeastern Taiwan. Results showed that MLP, DRNN, and stacked LSTM prediction error rates increased with prediction time (1–6 hours). Comparing the three models revealed that model networks with memory capacity (DRNN and stacked LSTM) were more accurate than those without memory capacity. A further comparison of model networks with memory capacity revealed that stacked LSTM yielded slightly more accurate results than did DRNN. Additionally, we determined that in the construction of the wind speed prediction model, the use of numerically simulated values reduced the error rate approximately by 30%. These results indicate that the inclusion of numerically simulated values in wind speed prediction models enhanced their prediction accuracy.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EEG-based epileptic seizure state detection using deep learning;International Journal of Modelling, Identification and Control;2024

2. A Computational Analysis of Drug-Expanse Predictions from Biomaterials Using Ensemble Model for Healthcare Applications;2023 11th International Conference on Intelligent Systems and Embedded Design (ISED);2023-12-15

3. Türkiye’nin Rüzgar Enerji Potansiyelinin Sayısal Hava Tahmin Sistemi ile Simülasyonu ve Analizi;European Journal of Science and Technology;2023-01-11

4. A Comparative Study of Noise Augmentation and Deep Learning Methods on Raman Spectral Classification of Contamination in Hard Disk Drive;2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP);2022-11-05

5. Land subsidence prediction using recurrent neural networks;Stochastic Environmental Research and Risk Assessment;2021-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3