Compelling Evidence of Oscillatory Behaviour of Hadronic Multiplicities in the Shifted Gompertz Distribution

Author:

Aggarwal R.1ORCID,Kaur M.2ORCID

Affiliation:

1. Savitribai Phule Pune University, 411007, Pune, India

2. Physics Department, Panjab University, 160014, Chandigarh, India

Abstract

Study of charged particle multiplicity distribution in high-energy interactions of particles helps in revealing the dynamics of particle production and the underlying statistical patterns, by which these distributions follow. Several distributions derived from statistics have been employed to understand its behaviour. In one of our earlier papers, we introduced the shifted Gompertz distribution to investigate this variable and showed that the multiplicity distributions in a variety of processes at different energies can be very well described by this distribution. The fact that the shifted Gompertz distribution, which has been extensively used in diffusion theory, social networking and forecasting, has been used for the first time in high-energy physics collisions remains interesting. In this paper, we investigate the phenomenon of oscillatory behaviour of the counting statistics observed in the high-energy experimental data, resulting from different types of recurrence relations defining the probability distributions. We search for such oscillations in the multiplicity distributions well described by the shifted Gompertz distribution and look for retrieval of additional valuable information from these distributions.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3