Affiliation:
1. School of Mines, Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
Abstract
Recently, the holding states of nanoindentation experiments have been widely used to analyze the time-dependent deformations of various rocks, and the dynamic mechanical analysis (DMA) method seems to be more applicable than the quasi-static mechanical analysis (QMA) method when the influence of creep deformation on mechanical properties of rocks was analyzed. However, the former method causes an abnormal behavior during the creep holding stages that was not clearly interpreted.2 Consequently, in this study, by amplifying the oscillation of the DMA method, the mechanical mechanism of this phenomenon was explained. Experimental results confirm that the rheological deformation of rocks consists of the creep deformation (depth increasing) and the elastic aftereffect deformation (depth decreasing) during the creep time with small oscillation; once the elastic aftereffect deformation exceeds the creep deformation, the abnormal behavior can be observed. Besides, some other abnormal behaviors might be found for other rock materials when the DMA method with different oscillations is used, which illustrates the complexity and limitation of applying this method. Thus, the QMA method was recommended to investigate the above questions in future studies.
Funder
Graduate Research and Innovation Projects of Jiangsu Province
Subject
Civil and Structural Engineering