SCFFNet: Spatial Context Feature Fusion Network for Understanding the Highly Congested Scenes

Author:

Xiong Liyan1,Yi Hu1ORCID,Huang Xiaohui1,Huang Weichun2

Affiliation:

1. School of Information Engineering, East China Jiaotong University, Nanchang 330013, China

2. School of Software, East China Jiaotong University, Nanchang 330013, China

Abstract

Accurate counting in dense scenes can effectively prevent the occurrence of abnormal events, which is crucial for flow management, traffic control, and urban safety. In recent years, the application of deep learning technology in counting tasks has significantly improved the performance of models, but it still faces many challenges, including the diversity of target distribution between image and background, the drastic change of target scale, and serious occlusion. To solve these problems, this paper proposes a spatial context feature fusion network, abbreviated as SCFFNet, to understand highly congested scenes and perform accurate counts as well as produce high-quality estimated density maps. SCFFNet first uses rich convolutions with different scales to calculate scale-aware features, adaptively encodes the scale of contextual information needed to accurately estimate density maps, and then calibrates and refuses the fused feature maps through a channel spatial attention-aware module, which improves the model’s ability to suppress background and focus on main features. Finally, the final estimated density map is generated by a dilated convolution module. We conduct experiments on five public crowd datasets, UCF_CC_50, WorldExpo’10, ShanghaiTech, Mall, and Beijing BRT, and the results show that our method achieves lower counting errors than existing state-of-the-art methods. In addition, we extend SCFFNet to count other objects, such as vehicles in the vehicle dataset HBR_YD, and the experimental results show that our proposed method significantly improves the output quality with higher accuracy than previous methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-scale fusion and dual attention network for crowd counting;Multimedia Tools and Applications;2024-05-21

2. High-density Image Object Counting Network Based on Spatial Context and Channel Attention;Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering;2022-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3