Affiliation:
1. School of Information Engineering, East China Jiaotong University, Nanchang 330013, China
2. School of Software, East China Jiaotong University, Nanchang 330013, China
Abstract
Accurate counting in dense scenes can effectively prevent the occurrence of abnormal events, which is crucial for flow management, traffic control, and urban safety. In recent years, the application of deep learning technology in counting tasks has significantly improved the performance of models, but it still faces many challenges, including the diversity of target distribution between image and background, the drastic change of target scale, and serious occlusion. To solve these problems, this paper proposes a spatial context feature fusion network, abbreviated as SCFFNet, to understand highly congested scenes and perform accurate counts as well as produce high-quality estimated density maps. SCFFNet first uses rich convolutions with different scales to calculate scale-aware features, adaptively encodes the scale of contextual information needed to accurately estimate density maps, and then calibrates and refuses the fused feature maps through a channel spatial attention-aware module, which improves the model’s ability to suppress background and focus on main features. Finally, the final estimated density map is generated by a dilated convolution module. We conduct experiments on five public crowd datasets, UCF_CC_50, WorldExpo’10, ShanghaiTech, Mall, and Beijing BRT, and the results show that our method achieves lower counting errors than existing state-of-the-art methods. In addition, we extend SCFFNet to count other objects, such as vehicles in the vehicle dataset HBR_YD, and the experimental results show that our proposed method significantly improves the output quality with higher accuracy than previous methods.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A multi-scale fusion and dual attention network for crowd counting;Multimedia Tools and Applications;2024-05-21
2. High-density Image Object Counting Network Based on Spatial Context and Channel Attention;Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering;2022-10-21