Using Image Feature Extraction to Identification of Ancient Ceramics Based on Partial Differential Equation

Author:

Niu Chuanbao1ORCID,Zhang Mingzhu2

Affiliation:

1. Institute of Art Media, Hefei Normal University, Hefei 230601, China

2. Institute of Nursing, Anhui Medical University, Hefei 230601, China

Abstract

This paper presents an in-depth study and analysis of the image feature extraction technique for ancient ceramic identification using an algorithm of partial differential equations. Image features of ancient ceramics are closely related to specific raw material selection and process technology, and complete acquisition of image features of ancient ceramics is a prerequisite for achieving image feature identification of ancient ceramics, since the quality of extracted area-grown ancient ceramic image feature extraction method is closely related to the background pixels and does not have generalizability. In this paper, we propose a deep learning-based extraction method, using Eased as a deep learning support platform, to extract and validate 5834 images of 272 types of ancient ceramics from kilns, celadon, and Yue kilns after manual labelling and training learning, and the results show that the average complete extraction rate is higher than 99%. The implementation of the deep learning method is summarized and compared with the traditional region growth extraction method, and the results show that the method is robust with the increase of the learning amount and has generalizability, which is a new method to effectively achieve the complete image feature extraction of ancient ceramics. The main content of the finite difference method is to use the ratio of the difference between the function values of two adjacent points and the distance between the two points to approximate the partial derivative of the function with respect to the variable. This idea was used to turn the problem of division into a problem of difference. Recognition of ancient ceramic image features was realized based on the extraction of the overall image features of ancient ceramics, the extraction and recognition of vessel type features, the quantitative recognition of multidimensional feature fusion ornamentation image features, and the implementation of deep learning based on inscription model recognition image feature classification recognition method; three-layer B/S architecture web application system and cross-platform system language called as the architectural support; and database services, deep learning packaging, and digital image processing. The specific implementation method is based on database service, deep learning encapsulation, digital image processing, and third-party invocation, and the service layer fusion and relearning mechanism is proposed to achieve the preliminary intelligent recognition system of ancient ceramic vessel type and ornament image features. The results of the validation test meet the expectation and verify the effectiveness of the ancient ceramic vessel type and ornament image feature recognition system.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3