Affiliation:
1. Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
2. Guizhou Medical University, Beijing Road, Guiyang, Guizhou Province 550004, China
Abstract
Rheumatoid arthritis (RA) represents the consequence of an immune response of the body’s immune system attacking healthy cells. This chronic inflammatory disorder has complicated pathogenesis. Traditional Chinese medicine (TCM) is well recognized as an effective therapy in treating RA and has been widely applied for centuries. Wu-Teng-Gao (WTG) is used as a representative natural herb formula in RA treatment in China, while its mechanisms are to be fully clarified. The present study attempted to explore mechanisms of WTG on RA treatment in a network pharmacological approach and verified using experiments in vitro. Following the establishment of a rat model of collagen-induced arthritis (CIA), WTG was applied externally on the metapedes of rats. HE staining was subsequently performed to visualize the pathological changes of synovium and bone. Simultaneously, flow cytometry was conducted to detect the cell ratio of T helper 17 (Th17) and Regulatory T cells (Treg) in splenic lymphocytes. Additionally, ELISA, qRT-PCR, and Western blot assays were adopted to determine expressions of RA-related factors in joints and serum. Results of network pharmacological analysis suggested that Th17 cell differentiation might serve as a potential signaling pathway of WTG therapy for RA. Animal experiments demonstrated that WTG ameliorated the articular inflammation and effectively inhibited the destruction of articular cartilage, and decreased Th17 and Treg cell ratios in CIA rats. Furthermore, WTG also greatly suppressed relevant levels of inflammatory cytokines (IL-17, TNF-α, IL-1, and IL-6) and RNAKL, whereas it elevated expressions of anti-inflammatory cytokines IL-10 and TGF-β. Our results confirmed that WTG might improve the imbalance of Th17/Treg cells in CIA animals through differentiation regulation, thus alleviating joint inflammation and bone destruction.
Funder
National Natural Science Foundation of China
Subject
Complementary and alternative medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献