Predicting Conserved Water Molecules in Binding Sites of Proteins Using Machine Learning Methods and Combining Features

Author:

Xiao Wei1ORCID,Ren Juhui1ORCID,Hao Jutao1ORCID,Wang Haoyu1ORCID,Li Yuhao1ORCID,Lin Liangzhao1ORCID

Affiliation:

1. School of Electronic and Information, Shanghai Dianji University, Shanghai 201306, China

Abstract

Water molecules play an important role in many biological processes in terms of stabilizing protein structures, assisting protein folding, and improving binding affinity. It is well known that, due to the impacts of various environmental factors, it is difficult to identify the conserved water molecules (CWMs) from free water molecules (FWMs) directly as CWMs are normally deeply embedded in proteins and form strong hydrogen bonds with surrounding polar groups. To circumvent this difficulty, in this work, the abundance of spatial structure information and physicochemical properties of water molecules in proteins inspires us to adopt machine learning methods for identifying the CWMs. Therefore, in this study, a machine learning framework to identify the CWMs in the binding sites of the proteins was presented. First, by analyzing water molecules’ physicochemical properties and spatial structure information, six features (i.e., atom density, hydrophilicity, hydrophobicity, solvent-accessible surface area, temperature B-factors, and mobility) were extracted. Those features were further analyzed and combined to reach a higher CWM identification rate. As a result, an optimal feature combination was determined. Based on this optimal combination, seven different machine learning models (including support vector machine (SVM), K -nearest neighbor (KNN), decision tree (DT), logistic regression (LR), discriminant analysis (DA), naïve Bayes (NB), and ensemble learning (EL)) were evaluated for their abilities in identifying two categories of water molecules, i.e., CWMs and FWMs. It showed that the EL model was the desired prediction model due to its comprehensive advantages. Furthermore, the presented methodology was validated through a case study of crystal 3skh and extensively compared with Dowser++. The prediction performance showed that the optimal feature combination and the desired EL model in our method could achieve satisfactory prediction accuracy in identifying CWMs from FWMs in the proteins’ binding sites.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3