Effects of Different Soil Modifiers on Salt Improvement and Distribution, Crop Growth of the Gully Land Consolidation on Loess Plateau

Author:

Yang Yang1ORCID,Zhou Beibei1ORCID,Feng Lei2ORCID

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China

2. Zhongnan Engineering Corporation, Changsha 410014, China

Abstract

Due to the strong evaporation and leakage loss, secondary saline-alkali was the main problem in the watershed of gully land consolidation on Loess Plateau. Through field farming experiments, five modifiers (maize stalk (MS), humus acid (HA), Yan Ke (YK), He Kang (HK), and nanobiochar (NB)) were studied to investigate the effects of these soil modifiers on soil water and salt distribution, leaf photosynthetic characteristics, and maize growth and yields, as well as economic benefits in secondary saline-alkali soils of gully land consolidation watershed on Loess Plateau in 2019 and 2020. The results showed that soil modifiers could increase the water-holding capacity of the soil, reduce the salt content of the soil profiles, and decompose the accumulation of salt. The maximum desalination rate obtained in 2019 and 2020 increased, respectively, by 71.57% and 46.02%, compared to that in the control treatment. Soil modifiers could increase the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and decreased the intercellular CO2 concentration (Ci). The output increased by 13.63%-31.84%, and revenue increased by 6.48%-38.01%. According to analyzing the production of soil modifier application, we found that the highest net profit was achieved when HK application rate was 52.4 kg/ha. Therefore, this study suggested that 52.4 kg/ha might be recommended as an appropriate soil modifier application strategy to deal with crop growth and improve economic benefit in secondary saline-alkali soils of Northwest China.

Funder

Scientific Research Project of China Three Gorges Construction Engineering Corporation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3