Correlation between Formic Acid Oxidation and Oxide Species on Pt(Bi)/GC and Pt/GC Electrode through the Effect of Forward Potential Scan Limit

Author:

Lović Jelena D.1ORCID

Affiliation:

1. ICTM, Institute of Electrochemistry, University of Belgrade, Njegoševa 12, Belgrade, Serbia

Abstract

Following earlier works from our laboratory, further experiments on electrochemical behavior in formic acid oxidation at electrodeposited Pt(Bi)/GC and Pt/GC electrode were performed in order to examine the effect of successive increase of the forward potential scan limit. Correlation between formic acid oxidation and oxide species on Pt(Bi)/GC electrode with increases of forward potential scan limit is based on the dependency of the backward peak potential from backward peak current. The obtained dependency reveals Bi influence for the scan limits up to 0.8 V. Since the Pt(Bi)/GC electrode is composed of Bi core occluded by Pt and Bi-oxide surface layer, the observed behavior is explained through the influence of surface metal oxide on easier formation of OHad species. Nevertheless, the influence of electronic modification of Pt surface atoms by underlying Bi is present and leads to the stronger adsorption of OH on Pt. At higher forward potential scan limits (from 0.8 V), Pt has a dominant role in HCOOH oxidation.

Funder

Ministry of Education, Science and Technological Development, Republic of Serbia

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen Production via Electroreforming;Reference Module in Earth Systems and Environmental Sciences;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3