Affiliation:
1. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China
Abstract
This paper discusses spectral and spectral element methods with Legendre-Gauss-Lobatto nodal basis for general 2nd-order elliptic eigenvalue problems. The special work of this paper is as follows. (1) We prove a priori and a posteriori error estimates for spectral and spectral element methods. (2) We compare between spectral methods, spectral element methods, finite element methods and their derivedp-version,h-version, andhp-version methods from accuracy, degree of freedom, and stability and verify that spectral methods and spectral element methods are highly efficient computational methods.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献