Protective Effects of Evodiamine against LPS-Induced Acute Kidney Injury through Regulation of ROS-NF-κB-Mediated Inflammation

Author:

Shi Yan1ORCID,Hua Qiuju1,Li Na1,Zhao Min1,Cui Yan1

Affiliation:

1. Hospital of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, China

Abstract

Acute kidney injury (AKI) is a critical care syndrome, which is usually associated with sepsis-related endotoxemia. Evodiamine (EVO) is an active ingredient of many traditional medicinal formulations that possess a battery of biological activities. In the study, we aimed to evaluate the potential protective effect of EVO against lipopolysaccharide- (LPS-) induced AKI and cytotoxicity. LPS-resulted pathological injuries were significantly ameliorated by the administration of EVO. EVO reduced the levels of blood urea nitrogen (BUN) and creatinine in LPS-treated rats. EVO also inhibited LPS-induced reduction of cell viability in NRK-52E cells. LPS-resulting increase of TNFα and IL-1β in both serum and kidney of rats and NRK-52E cells was inhibited by EVO. LPS-induced increase of P65 NF-κB expression was markedly inhibited by EVO. EVO-induced reduction of TNFα and IL-1β expression in LPS-treated cells was blocked by overexpression of P65 NF-κB. Moreover, the increase of cell viability in LPS-treated cells induced by EVO was remarkably suppressed by overexpression of P65 NF-κB. LPS-resulting increase of reactive oxygen species (ROS) production was suppressed by EVO. H2O2 suppressed EVO-induced decrease of P65 NF-κB expression and increase of cell viability in LPS-treated NRK-52E cells. Moreover, the antioxidant NAC significantly promoted EVO-induced decrease of P65 NF-κB expression and increase of cell viability in LPS-treated NRK-52E cells. In conclusion, EVO had crucial protective effects against LPS-induced AKI and cytotoxicity through the antioxidant activities and thus the inhibition of inflammation. Our data highlight EVO as a potential candidate for the development of new strategies for the treatment of AKI.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3