Energy Balanced Scheduling for Target Tracking with Distance-Dependent Measurement Noise in a WSN

Author:

Hu Xiaoqing12ORCID,Bao Ming1,Hu Yu-Hen3,Xu Bugong2

Affiliation:

1. Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

2. College of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China

3. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract

Energy efficient collaborative target tracking in a wireless sensor network (WSN) is considered. It is assumed that the distance estimates of range sensors are contaminated by distance-dependent multiplicative observation noises. The nonlinear measurement model leads to the application of a generalized unscented Kalman filtering (GUKF) tracking algorithm. Energy efficient operation is achieved by imposing an energy balance criterion to select a subset of sensors near the target to participate in collaborative tracking without compromising tracking performance. This is formulated as a multiobjective constrained optimization problem that minimizes both the state covariance of the GUKF algorithm and the variance of on-board residue energy of sensor nodes within the detection range of the target. An efficient, distributed, polynomial time heuristic algorithm that achieves a performance close to the optimal solution is proposed. Extended simulation results indicate that this proposed joint scheduling and tracking algorithm is capable of delivering desired tracking performance while significantly extending the WSN lifespan.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3