Online Cyber-Attack Detection in the Industrial Control System: A Deep Reinforcement Learning Approach

Author:

Liu Zhenze1ORCID,Wang Chunyang234ORCID,Wang Weiping234ORCID

Affiliation:

1. College of Communication Engineering, Jilin University, Changchun, Jilin 130025, China

2. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Shunde Graduate School, Beijing University of Science and Technology, Beijing, Guangdong 528399, China

4. Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China

Abstract

In the open network environment, industrial control systems face huge security risks and are often subject to network attacks. The existing abnormal detection methods of industrial control networks have the problem of a low intelligence degree of adaptive detection and recognition. To overcome this problem, this article makes full use of the advantages of deep reinforcement learning in decision-making and builds a learning system with continuous learning ability. Specifically, industrial control network and deep reinforcement learning characteristics are applied to design a unique reward and learning mechanism. Moreover, an industrial control anomaly detection system based on deep reinforcement learning is constructed. Finally, we verify the algorithm on the gas pipeline industrial control dataset of Mississippi State University. The experimental results show that the convergence rate of this model is significantly higher than that of traditional deep learning methods. More importantly, this model can get a higher F1 score.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chaotic tumbleweed optimization algorithm with stacked deep learning based cyberattack detection in industrial CPS environment;Alexandria Engineering Journal;2023-12

2. Detection and Control of Cyberbullying via Machine Learning;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3