A Compact Broad Circularly Polarized Cross-Dipole Antenna with Grounded Parasitic Elements

Author:

Yang Dong1,Hao Lichao1,Wang Lei2ORCID

Affiliation:

1. Zhengzhou Key Laboratory of Electronic Information Functional Materials and Devices, Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, Henan, China

2. Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, CEPREI, Guangzhou, China

Abstract

A new wideband cross-dipole antenna (CDA) with a circularly polarized (CP) characteristic is proposed in this article. The antenna consists of four L-shaped patches, two modified trapezoid-microstrip lines as an impedance tuner, a pair of vacant-quarter feeding loops as a continuous-phase feeding network, and four grounded inverted L-shaped strips as parasitic elements. It is noticed that the grounded inverted L-shaped strips are inserted directly below the L-shaped patches to increase the CP bandwidth and enhance the gains of the antenna, which is different from the conventional parasitic elements. First, a pair of vacant-quarter feeding loops is used as a feeding structure to provide a sequential phase characteristic. Second, four L-shaped patches as driven elements are connected to the feeding structure to excite two CP resonant modes. Third, two modified trapezoid-microstrip lines are inserted into the feeding structure to adjust the impedance match. Moreover, four grounded inverted L-shaped strips are introduced into the square reflector to achieve wider CP operation by utilizing a gap capacitive coupling feeding way. Finally, the proposed antenna is simulated, manufactured, and measured to verify the design rationality. The measured results indicate the proposed antenna has a broad 3-dB ARBW of 82.5% (1.38–3.32 GHz, 2.35 GHz) and a wide −10-dB IBW of 81.2% (1.18–3.04 GHz, 2.29 GHz). Furthermore, the measured and simulated CP bandwidths are 75.1% (1.38–3.04 GHz, 2.21 GHz) and 74.7% (1.36–2.98 GHz, 2.17 GHz), which is suitable for CP applications in WiBro (2.3–2.39 GHz) and GPS (L1 1.575 GHz) bands.

Funder

Zhengzhou Key Laboratory of Electronic Information Functional Materials and Devices

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3