The Effects of Thai Herbal Ha-Rak Formula on COX Isoform Expression in Human Umbilical Vein Endothelial Cells Induced by IL-1β

Author:

Palo Titchaporn1ORCID,Thaworn Athiwat1,Charoenkij Phornnapa1ORCID,Thamsermsang Onusa2,Chotewuttakorn Sirikul1ORCID,Tripatara Pinpat1,Laohapand Tawee2,Akarasereenont Pravit12ORCID

Affiliation:

1. Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

2. Center of Applied Thai Traditional Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Abstract

Objective. To investigate the modulated effects of HRF on cyclooxygenase isoform expression and its activity, using the human umbilical vein endothelial cell (HUVEC) model induced by interleukin-1 beta (IL-1β). Methods. Cells were treated with indomethacin (positive control), HRF, and its components at various concentrations prior to treatment with IL-1β at 24 h. Cell viability was determined by MTT assay. Moreover, the anti-inflammatory effects of HRF and its components through mRNA and protein expression were established using real-time quantitative PCR and Western blot, respectively. COX activity was identified via exogenous and endogenous PGE2 productions using the EIA. Result. There was no cytotoxicity in HUVECs treated with HRF. None of the experimental conditions used in the study affected the expression of COX-1, but COX-2 protein expression was inhibited at concentrations under 10 µg/mL. Despite the significantly increased levels of exogenous PGE2, HRF had no effect on COX-2 mRNA expression. However, the production of PGE2 was lower at a concentration of 100 µg/mL HRF than at a concentration below 10 µg/mL. Interestingly, each component of HRF revealed different effects of the Ha-Rak formula. Conclusion. Our preliminary findings suggest that HRF and its components provide diverse modulation of COX-2 and PGE2 at the in vitro level.

Funder

Thailand Research Fund

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3